Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.800
Filter
1.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720342

ABSTRACT

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Subject(s)
Brain Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Glioma/immunology , Glioma/therapy , Glioma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Animals , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology
2.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article in English | MEDLINE | ID: mdl-38725860

ABSTRACT

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Subject(s)
Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Animals , Cell Proliferation/genetics , Exosomes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice
3.
Front Immunol ; 15: 1388769, 2024.
Article in English | MEDLINE | ID: mdl-38726003

ABSTRACT

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Subject(s)
Extracellular Vesicles , Glioblastoma , MicroRNAs , Organoids , Tumor Microenvironment , Humans , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Organoids/immunology , MicroRNAs/genetics , Tumor Microenvironment/immunology , Signal Transduction , Tumor Cells, Cultured , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods
4.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724464

ABSTRACT

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Subject(s)
Glioblastoma , NK Cell Lectin-Like Receptor Subfamily K , Neoplastic Stem Cells , Oncolytic Virotherapy , Humans , Glioblastoma/therapy , Glioblastoma/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplastic Stem Cells/metabolism , Oncolytic Virotherapy/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor
5.
Nat Commun ; 15(1): 3905, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724522

ABSTRACT

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Subject(s)
Brain Neoplasms , Chromatin , Gene Expression Regulation, Neoplastic , Glioblastoma , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromatin/metabolism , Chromatin/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Genetic Heterogeneity , Promoter Regions, Genetic/genetics , Transcription, Genetic , Enhancer Elements, Genetic/genetics , Chromosomes, Human/genetics
6.
Sci Rep ; 14(1): 10692, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38724609

ABSTRACT

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Ontology , Computational Biology/methods
7.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725030

ABSTRACT

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Female , Gene Expression Regulation, Neoplastic , Cell Movement , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Mice, Nude , Apoptosis
8.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Apoptosis/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Integrin alpha3/metabolism , Integrin alpha3/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
9.
Sci Rep ; 14(1): 10722, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729956

ABSTRACT

Application of optical coherence tomography (OCT) in neurosurgery mostly includes the discrimination between intact and malignant tissues aimed at the detection of brain tumor margins. For particular tissue types, the existing approaches demonstrate low performance, which stimulates the further research for their improvement. The analysis of speckle patterns of brain OCT images is proposed to be taken into account for the discrimination between human brain glioma tissue and intact cortex and white matter. The speckle properties provide additional information of tissue structure, which could help to increase the efficiency of tissue differentiation. The wavelet analysis of OCT speckle patterns was applied to extract the power of local brightness fluctuations in speckle and its standard deviation. The speckle properties are analysed together with attenuation ones using a set of ex vivo brain tissue samples, including glioma of different grades. Various combinations of these features are considered to perform linear discriminant analysis for tissue differentiation. The results reveal that it is reasonable to include the local brightness fluctuations at first two wavelet decomposition levels in the analysis of OCT brain images aimed at neurosurgical diagnosis.


Subject(s)
Brain Neoplasms , Glioma , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Glioma/diagnostic imaging , Glioma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Wavelet Analysis
11.
Sci Rep ; 14(1): 10507, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714727

ABSTRACT

Glioma, particularly glioblastomas (GBM), is incurable brain tumor. The most targeted receptor tyrosine kinase (RTKs) drugs did not bring benefit to GBM patients. The mechanism of glioma growth continues to be explored to find more effective treatment. Here, we reported that Ser/Thr protein kinase YANK2 (yet another kinase 2) is upregulated in glioma tissues and promotes the growth and proliferation of glioma in vitro and in vivo. Further, we confirmed that oncogene Fyn directly activated YANK2 through phosphorylation its Y110, and Fyn-mediated YANK2 phosphorylation at Y110 site promotes glioma growth by increasing its stability. Finally, YANK2 was proved to be a novel upstream kinase of p70S6K and promotes glioma growth by directly phosphorylating p70S6K at T389. Taken together, we found a new mTOR-independent p70S6K activation pathway, Fyn-YANK2-p70S6K, which promotes glioma growth, and YANK2 is a potential oncogene and serves as a novel therapeutic target for glioma.


Subject(s)
Cell Proliferation , Glioma , Proto-Oncogene Proteins c-fyn , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , TOR Serine-Threonine Kinases , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Humans , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/genetics , TOR Serine-Threonine Kinases/metabolism , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Animals , Cell Line, Tumor , Phosphorylation , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic
12.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744809

ABSTRACT

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Subject(s)
Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , Methyltransferases , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Signal Transduction , RNA, Transfer/metabolism , RNA, Transfer/genetics , Mitochondria/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation
13.
Sci Rep ; 14(1): 10985, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744979

ABSTRACT

Several prognostic factors are known to influence survival for patients treated with IDH-wildtype glioblastoma, but unknown factors may remain. We aimed to investigate the prognostic implications of early postoperative MRI findings. A total of 187 glioblastoma patients treated with standard therapy were consecutively included. Patients either underwent a biopsy or surgery followed by an early postoperative MRI. Progression-free survival (PFS) and overall survival (OS) were analysed for known prognostic factors and MRI-derived candidate factors: resection status as defined by the response assessment in neuro-oncology (RANO)-working group (no contrast-enhancing residual tumour, non-measurable contrast-enhancing residual tumour, or measurable contrast-enhancing residual tumour) with biopsy as reference, contrast enhancement patterns (no enhancement, thin linear, thick linear, diffuse, nodular), and the presence of distant tumours. In the multivariate analysis, patients with no contrast-enhancing residual tumour or non-measurable contrast-enhancing residual tumour on the early postoperative MRI displayed a significantly improved progression-free survival compared with patients receiving only a biopsy. Only patients with non-measurable contrast-enhancing residual tumour showed improved overall survival in the multivariate analysis. Contrast enhancement patterns were not associated with survival. The presence of distant tumours was significantly associated with both poor progression-free survival and overall survival and should be considered incorporated into prognostic models.


Subject(s)
Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Prognosis , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Adult , Neoplasm, Residual/diagnostic imaging , Postoperative Period , Progression-Free Survival
14.
Acta Neuropathol Commun ; 12(1): 72, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711090

ABSTRACT

The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.


Subject(s)
Brain Neoplasms , DNA Methylation , Gene Regulatory Networks , Glioma , Isocitrate Dehydrogenase , Mutation , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics
15.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
16.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709930

ABSTRACT

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Breast Neoplasms , Nanoparticles , Oxidative Phosphorylation , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Animals , Humans , Female , Nanoparticles/chemistry , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Drug Delivery Systems/methods , Glycolysis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
17.
Med Oncol ; 41(6): 140, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713310

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
18.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710703

ABSTRACT

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Activating Transcription Factor 3 , Brain Neoplasms , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Neoplastic Stem Cells , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Exosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
19.
Neuropathol Appl Neurobiol ; 50(3): e12983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708554

ABSTRACT

We describe a 46-year-old patient with an IDH-wildtype diffusely infiltrating atypical teratoid/rhabdoid tumour (AT/RT), SHH-1B molecular subtype. The unusual histology and subsequent diagnosis in an adult patient will be discussed.


Subject(s)
Brain Neoplasms , Rhabdoid Tumor , Teratoma , Humans , Rhabdoid Tumor/pathology , Rhabdoid Tumor/genetics , Teratoma/pathology , Teratoma/genetics , Middle Aged , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Male , Hedgehog Proteins/genetics
20.
Front Immunol ; 15: 1342977, 2024.
Article in English | MEDLINE | ID: mdl-38698847

ABSTRACT

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Subject(s)
Antioxidants , Brain Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Oxidation-Reduction , Phenotype , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Antioxidants/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress , Computational Biology/methods , Prognosis , Gene Expression Profiling , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...